
A Lean tactic for normalising ring
expressions with exponents (short paper)

Anne Baanen[0000−0001−8497−3683]

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
t.baanen@vu.nl

Abstract. This paper describes the design of the normalising tactic
ring_exp for the Lean prover. This tactic improves on existing tactics
by extending commutative rings with a binary exponent operator. An
inductive family of types represents the normal form, enforcing various
invariants. The design can also be extended with more operators.

1 Introduction

In interactive theorem proving, normalising tactics are powerful tools to prove
equalities. Given an expression a, these tactics return an expression a′ in normal
form together with a proof that a = a′. For instance, in mathlib [10], the
mathematical library for the Lean theorem prover [7], the ring tactic normalises
expressions in a commutative (semi)ring. Analogous tactics or conversions exist
in many theorem provers [5, 8, 9]. The ring tactic in Lean can be directly invoked
by the user and is called by the decision procedure linarith. The utility of ring
is evident from the fact that it is invoked over 300 times in mathlib.

The ring tactic in Lean, and the tactic in Coq it is based on, use a Horner
normal form representation of polynomials [4]. The Horner form represents a
polynomial f(x) with one of two cases: either it is constant (f(x) = c) or it is
of the form f(x) = c + x ∗ g(x). This representation allows ring to uniquely
and efficiently represent any polynomial, i.e. any expression consisting of the
operators + and ∗, numerals and variables. Problems arise when expressions
include other operators than + and ∗, such as the exponentiation operator ∧.
The Horner form fundamentally assumes the degree of a term is a constant
integer, so it cannot be simply modified to represent variable exponents, or
more generally to represent ∧ applied to compound expressions. The analogous
procedures in other theorem provers have the same restriction. Adding rewrite
rules such as xn+1 7→ x∗xn is not a universal solution. This rule would unfold the
expression x100 into a large term composed of repeated multiplications, reducing
the performance of the procedure significantly. The result is that ring cannot
prove that 2n+1 − 1 = 2 ∗ 2n − 1 for a free variable n : N.

The ring_exp tactic uses a new extensible normal form, currently supporting
the operators +, ∗ and ∧, numerals and variables. Its domain is a strict superset
of the domain of previous semiring tactics, without sacrificing too much of the

efficiency of ring. This paper describes the design and engineering challenges
encountered in implementing ring_exp.

The version of ring_exp discussed in this paper was merged into mathlib
in commit 5c09372658.1 Additional code and setup instructions are available
online.2

2 Design Overview

The ring_exp tactic uses a normalisation scheme similar to the original ring
tactic. The input from the tactic system is an abstract syntax tree representing
the expression to normalise. An eval function maps inputs to a type ex of
normalised expressions. The normal form should be designed in such a way that
values of type ex are equal if and only if the input expressions can be proved
equal using the axioms of commutative semirings. From the ex representation,
the normalised output expression is constructed by a function simple. Both
eval and simple additionally return a proof showing that the input and output
expressions are equal.

The ring_exp tactic does not use reflection but directly constructs proof
terms to be type checked by Lean’s kernel, as is typical for tactics in mathlib [10].
Reflective tactics avoid the construction and checking of a large proof term by
performing most computation during proof checking, running a verified pro-
gram [2]. If the proof checker performs efficient reduction, this results in a sig-
nificant speed-up of the tactic, at the same time as providing more correctness
guarantees. Unfortunately, the advantages of reflection do not translate directly
to Lean. Tactic execution in Lean occurs within a fast interpreter, while the
kernel used in proof checking is designed for simplicity instead of efficient reduc-
tion [3]. Achieving an acceptable speed for ring_exp requires other approaches
to the benefits that reflection brings automatically.

The language of semirings implemented by ring, with binary operators +, ∗
and optionally − and /, is extended in ring_exp with a binary exponentiation
operator ∧. The input expression can consist of these operators applied to other
expressions, with two base cases: natural numerals such as 0 and 37, and atoms.
An atom is any expression which is not of the above form, e.g. a variable name
x or a function application sin(y − z). It is treated as an opaque variable in the
expression. Two such expressions are considered equal if in every commutative
semiring they evaluate to equal values, for any assignment to the atoms.

Using a suitable representation of the normal form is crucial to easily guar-
antee correctness of the normaliser. Since there is no clear way to generalise
the Horner form, ring_exp instead represents its normal form ex as a tree
with operators at the nodes and atoms at the leaves. Certain classes of non-
normalised expressions are prohibited by restricting which sub-node can occur
for each node. The ex type captures these restrictions through a parameter in the
enum ex_type, creating an inductive family of types. Each constructor allows
1 https://github.com/leanprover-community/mathlib/tree/5c09372658
2 https://github.com/lean-forward/ring_exp

https://github.com/leanprover-community/mathlib/tree/5c09372658
https://github.com/lean-forward/ring_exp

inductive ex_type : Type
| sum | prod | exp | base
inductive ex : ex_type → Type
| zero : ex_info → ex sum -- 0
| sum : ex_info → ex prod → ex sum → ex sum -- +
| coeff : ex_info → coeff → ex prod -- numerals
| prod : ex_info → ex exp → ex prod → ex prod -- *
| exp : ex_info → ex base → ex prod → ex exp -- ^
| var : ex_info → atom → ex base -- atoms
| sum_b : ex_info → ex sum → ex base

Fig. 1. Definition of ex_type and ex

specific members of the ex family in its arguments and returns a specific type of
ex. The full definition is given in Figure 1. The additional ex_info record passed
to the constructors contains auxiliary information used to construct correctness
proofs. The sum_b constructor allows sums as the base of a power, analogously
to the parentheses in (a+ b)c.

For readability, we will write the ex representation in symbols instead of
the constructors of ex. Thus, the term sum (prod (exp (var n) (coeff 1))
(coeff 1)) zero (with ex_info fields omitted) is written as n1 ∗1+0, and the
normalised form of 2n − 1 is written (2 + 0)n

1∗1 ∗ 1 + (−1) + 0.

Table 1. Associativity and distributivity properties of the +, ∗ and ∧ operators

+ ∗ ∧

+ (a+ b) + c = a+ (b+ c) — —

∗ (a+ b) ∗ c = a ∗ c+ b ∗ c;
a ∗ (b+ c) = a ∗ b+ a ∗ c (a ∗ b) ∗ c = a ∗ (b ∗ c) —

∧ ab+c = ab ∗ ac (a ∗ b)c = ac ∗ bc
(
ab
)c

= ab∗c

The types of the arguments to each constructor are determined by the asso-
ciativity and distributivity properties of the operators involved, summarised in
Table 1. Since addition does not distribute over either other operator (as seen
from the empty entries on the + row), an expression with a sum as outermost
operator cannot be rewritten so that another operator is outermost. Thus, the
set of all expressions should be represented by ex sum. Since ∗ distributes over
+ but not over ∧, the next outermost operator after + will be ∗. By associativity
(the diagonal entries of the table) the left argument to + should have ∗ as outer-
most operator; otherwise we can apply the rewrite rule (a+ b)+ c 7→ a+(b+ c).
Analogously, the left argument to the prod constructor is not an ex prod but
an ex exp, and the left argument to exp is an ex base.

The eval function interprets each operator in the input expression as a cor-
responding operation on ex, building a normal form for the whole expression
out of normalised subexpressions. The operations on ex build the correctness
proof of normalisation out of the proofs for subexpressions using a correctness
lemma: for example, the lemma add_pf_z_sum : ps = 0 → qs = qs' → ps +
qs = qs' is used on the input expression ps + qs when ps normalises to 0.

Adding support for a new operator would take relatively little work: after
extending the table of associativity and distributivity relations, one can insert
the constructor in ex using the table to determine the relevant ex_type, and
add an operation on ex that interprets the operator.

3 Intricacies

The ex type enforces that distributivity and associativity rules are always ap-
plied, but commutative semirings have more equations. In a normal form, ar-
guments to commutative operators should be sorted according to some linear
order ≺: if a ≺ b, then a+ (b+ 0) is normalised and b+ (a+ 0) is not. Defining
a linear order on ex requires an order on atoms; definitional equality of atoms
is tested (with user control over the amount of definitional unfolding) in the
tactic monad [3], so a well-defined order on atoms cannot be easily expressed
on the type level. Additionally, the recursive structure of expressions means any
expression a can also be represented as (a)1 ∗ 1 + 0; if the left argument to ∧ is
0 or a ∗ b + 0, the expression is not in normal form. Although these invariants
can also be encoded in a more complicated ex type, they are instead maintained
by careful programming. A mistake in maintaining these invariants is not fatal:
invariants only protect completeness, not soundness, of ring_exp.

Efficient handling of numerals in expressions, using the coeff constructor, is
required for acceptable running time without sacrificing completeness. The tactic
should not unfold expressions like x ∗ 1000 as 1000 additions of the variable x.
Representing numerals with the coeff constructor requires an extra step to
implement addition. When terms overlap, differing only in the coefficients as for
a ∗ b2 ∗ 1 + a ∗ b2 ∗ 2, their sum is given by adding their coefficients: a ∗ b2 ∗ 3.
Moreover, when the coefficients add up to 0, the correct representation is not
a ∗ b2 ∗ 0 : ex prod but 0 : ex sum. Coefficients must be treated similarly in
exponents: xa∗b2∗1 ∗ xa∗b2∗2 = xa∗b2∗3. Both cases are handled by a function
add_overlap which returns the correct sum if there is overlap, or indicates
that there is no such overlap. By choosing the order on expressions such that
overlapping terms will appear adjacent in a sum, add_overlap can be applied
in one linear scan.

A subtle complication arises when normalising in the exponent of an expres-
sion a ∧ b: the type of a is an arbitrary commutative semiring, but b must be a
natural number. To correctly compute a normalised expression for b, the tactic
needs to keep track of the type of b. The calculations of the eval function are
thus done in an extension of the tactic monad, called the ring_exp_m monad.
Using a reader monad transformer [6], ring_exp_m stores the type of the cur-

rent expression as a variable which can be replaced locally when operating on
exponents.

Implementing subtraction and division also requires more work, since semir-
ings in general do not have well-defined − or / operators. The tactic uses type-
class inference to determine whether the required extra structure exists on the
type. When this is the case, the operators can be rewritten: a − b becomes
a+(−1) ∗ b in a ring and a/b becomes a ∗ b−1 in a field. Otherwise, the subtrac-
tion or division is treated as an atom. Conditionally rewriting avoids the need for
an almost-ring concept to treat semirings and rings uniformly [4]. Cancellation
of multiplication and division, such as a∗b/a = b, is not supported by the tactic,
since such lemmas require an a 6= 0 side condition. In future work, extending
the ex type with a negation or multiplicative inverse constructor could allow for
handling of these operators in more general cases.

For completeness, atoms should be considered up to definitional equality:
(λ x, x) a and (λ x y, x) a b reduce to the same value a, so they should
be treated as the same atom. The ring_exp_m monad contains a state monad
transformer to keep track of which atoms are definitionally equal. The state con-
sists of a list of all distinct atoms encountered in the whole input expression,
and any comparisons between atoms are instead made by comparing their in-
dices in the list. As an additional benefit, the indices induce an order on atoms,
which is used to sort arguments to commutative operators. Within atoms, there
may be subexpressions that can be normalised as well. Instead of running the
normaliser directly, ring_exp calls the built-in tactic simp with the normaliser
as an argument. The simp tactic calls a given normaliser on each subexpression,
rewriting it when the normaliser succeeds.

4 Optimisations

An important practical consideration in implementing ring_exp is its efficiency,
especially running time. Among the approximately 300 calls to ring in mathlib,
about half are invocations on linear expressions by the tactic linarith. Since
ring_exp is intended to work as a drop-in replacement for ring, its performance
characteristics, especially for linear expressions, should be comparable.

Optimising the code was a notable part of the implementation of ring_exp.
Profiling revealed that up to 90% of running time could be spent on inferring
implicit arguments and typeclass instances. The solution was to pass all argu-
ments explicitly and maintain a cache of typeclass instances, also caching the
expressions for the constants 0 and 1. It was possible to apply this solution with-
out large changes to the codebase, because the required extra fields were hidden
behind the ring_exp_m and ex_info types.

The result of these optimisations can be quantified by comparing the run-
ning time of ring and ring_exp on randomly generated expressions.3 The per-
formance measure is the tactic execution time reported by the Lean profiler,
3 The benchmark program and analysis scripts are available at https://github.com/

lean-forward/ring_exp.

https://github.com/lean-forward/ring_exp
https://github.com/lean-forward/ring_exp

running on a 3 GHz Intel® Core™ i5-8500 CPU with 16 GB of RAM. On arbi-
trary expressions, the benchmark indicates that ring_exp is a factor of approx-
imately 3.9 times slower than ring; on linear expressions such as are passed by
linarith, ring_exp is 1.7 times slower than ring.

Compared to a constant factor difference in the average cases, ring_exp has
an advantage on problems requiring efficient handling of numeric exponents. The
ring_exp tactic is a factor 20 faster than ring when showing x50 ∗x50 = x100 in
an arbitrary ring. A similar speedup for ring_exp was found in practice, for the
goal (1+x2+x4+x6)∗ (1+x) = 1+x+x2+x3+x4+x5+x6+x7. The Horner
normal form used by ring is optimal for representing expressions with additions
and multiplications, so a constant-factor slowdown compared to ring on simpler
goals is traded off for faster and more powerful handling of more complicated
goals.

5 Discussion

The ring tactic for Coq and Lean can efficiently convert expressions in commu-
tative semirings to normal form. A normalizing procedure for polynomials is also
included with the Agda standard library [9], HOL Light [5] and Isabelle/HOL [8],
and decision procedures exist that support exponential functions [1]; there is no
single normalisation procedure supporting compound expressions in exponents.

Compared with the ring tactic, the ring_exp tactic can deal with a strict
superset of expressions, and can do so without sacrificing too much speed. The
extensible nature of the ex type should make it simple to add support for more
operators to ring_exp. Independently, it should be possible to adapt the ex
type to other algebraic structures such as lattices or vector spaces. Although
more optimisations are needed to fully equal ring in average case efficiency,
the ring_exp tactic already achieves its goal of being a useful, more general
normalisation tactic. These results are as much a consequence of engineering
effort as of theoretical work.

Acknowledgements The author has received funding from the NWO under the
Vidi program (project No. 016.Vidi.189.037, Lean Forward).

Floris van Doorn, Mario Carneiro and Robert Y. Lewis reviewed the code and
suggested improvements. Brian Gin-Ge Chen, Gabriel Ebner, Jasmin Blanchette,
Kevin Buzzard, Robert Y. Lewis, Sander Dahmen and the anonymous reviewers
read this paper and gave useful suggestions. Many thanks for the help!

References

1. Akbarpour, B., and Paulson, L.C.: Extending a resolution prover for inequalities
on elementary functions. In: Dershowitz, N., and Voronkov, A. (eds.) LPAR 2007.
LNCS, vol. 4790, pp. 47–61. Springer, Berlin, Heidelberg (2007). doi: 10.1007/978-
3-540-75560-9_6

https://doi.org/10.1007/978-3-540-75560-9_6
https://doi.org/10.1007/978-3-540-75560-9_6

2. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Abadi, M., and Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Berlin, Heidelberg (1997). doi: 10.1007/11541868_7

3. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., and Moura, L. de: A metaprogram-
ming framework for formal verification. In: ICFP 2017. PACMPL. ACM (2017).
doi: 10.1145/3110278

4. Grégoire, B., and Mahboubi, A.: Proving equalities in a commutative ring done
right in Coq. In: Hurd, J., and Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 98–113. Springer, Berlin, Heidelberg (2005). doi: 10.1007/11541868_7

5. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., and Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Berlin, Heidelberg
(1996). doi: 10.1007/BFb0031814

6. Liang, S., Hudak, P., and Jones, M.: Monad transformers and modular interpreters.
In: POPL ’95, pp. 333–343. ACM (1995). doi: 10.1145/199448.199528

7. Moura, L. de, Kong, S., Avigad, J., Doorn, F. van, and Raumer, J. von: The Lean
theorem prover (system description). In: Felty, A.P., and Middeldorp, A. (eds.)
Automated Deduction - CADE-25. LNCS, vol. 9195, pp. 378–388. Springer, Berlin,
Heidelberg (2015). doi: 10.1007/978-3-319-21401-6_26

8. Nipkow, T., Wenzel, M., and Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, Berlin, Heidelberg (2002). doi: 10.1007/3-540-
45949-9

9. The Agda Team: Agda standard library, version 1.3 for Agda 2.6.1. https://wiki.
portal.chalmers.se/agda/Libraries/StandardLibrary

10. The mathlib Community: The Lean Mathematical Library. In: Blanchette, J., and
Hrițcu, C. (eds.) CPP 2020, pp. 367–381. ACM (2020). doi: 10.1145/3372885.
3373824

https://doi.org/10.1007/11541868_7
https://doi.org/10.1145/3110278
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1145/199448.199528
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://wiki.portal.chalmers.se/agda/Libraries/StandardLibrary
https://wiki.portal.chalmers.se/agda/Libraries/StandardLibrary
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824

	A Lean tactic for normalising ring expressions with exponents (short paper)
	1 Introduction
	2 Design Overview
	3 Intricacies
	4 Optimisations
	5 Discussion

