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Background

Lean is a proof assistant based on the calculus of constructions.
It has a simple kernel for proof checking and an elaborator with
powerful tactic support.
The Lean community is developing mathlib, a repository of
formalised classical mathematics proofs and proof automation.

The Lean Forward project aims to make proof assistants
accessible to mathematicians by developing proof automation
informed by users’ needs.
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Background

To a mathematician, the following is obvious:

2n+1 − 1 = 2 ∗ 2n − 1

Lean should do it automatically.

The ring tactic (in Lean and Coq) proves equations using Horner
normal form: efficient for the semiring operators + and ∗, but it
doesn’t support exponentiation (∧) by variables.

It’s not too hard to solve this manually: rewrite an+1 = an ∗ a and
ring can finish by applying commutativity.

Such rules don’t work unconditionally: x100 should not become 100
multiplications of x.
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Background

More examples from mathlib:

2p ∗ 2 = 2p+1

4m ∗ 4m+1 = 42m+1

xk+2 − yk+2 = x ∗ (xk+1 − yk+1) + (x ∗ yk+1 − yk+2)

(x + y)(xn+1 + (n + 1)xn+1−1y + zy2) = xn+2 + (n + 2)xn+1y+
(xz + (n + 1) ∗ xn + zy)y2
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Design overview

Goal: a practical normalising tactic ring_exp for expressions with +,
∗ and ∧, numerals (in Q) and variables. It should solve all goals that
ring can and be approximately as fast.

To prove a = b, normalise a giving pa : a = a′ and normalise b giving
pb : b = b′, then check a′ is identical to b′. If identical,
eq.trans pa (eq.symm pb) proves a = b.

Lean tactics typically don’t use reflection since producing proof terms
(in the VM) tends to be faster than kernel reduction.
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The normal form is a syntax tree in the type family ex. The children
for each node are restricted by a parameter ex_type:
inductive ex_type : Type
| sum | prod | exp | base
inductive ex : ex_type → Type
| zero : ex_info → ex sum -- 0
| sum : ex_info → ex prod → ex sum → ex sum -- +
| coeff : ex_info → coeff → ex prod -- rat
| prod : ex_info → ex exp → ex prod → ex prod -- *
| exp : ex_info → ex base → ex prod → ex exp -- ^
| var : ex_info → atom → ex base -- atom
| sum_b : ex_info → ex sum → ex base -- (...)

(a + b) + c is not allowed: left argument to sum must be a
product
a ∗ (b + c) is not allowed: right argument to prod must be a
product
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Intricacies

Commutativity: pick a linear order ≺ on ex. Then sort
a + b + c + · · · so that a ≺ b ≺ c ≺ · · · .

To prevent exponential blowup, don’t unfold 100 ∗ a to
a + a + · · ·+ a. This means keeping track of coefficients.
The function add_overlap decides when to add coefficients:

add_overlap (3 ∗ x2) (7 ∗ x2) = 10 ∗ x2

add_overlap (3 ∗ x2) (7 ∗ y2) = 3 ∗ x2 + 7 ∗ y2

add_overlap (3 ∗ x2) (−3 ∗ x2) = 0 (not 0 ∗ x2)

In a general semiring R, exponentiation has type ∧ : R → N → R.
During execution, ring_exp keeps track of the current type
using a reader monad transformer.
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Optimisations

To be practical, the ring_exp tactic must be fast and optimisation is
needed to achieve acceptable running time. The Horner form used by
the ring tactic is optimal for + and ∗.

Typeclass instances and implicit arguments cost time to infer,
so they are cached:
instances are stored with the current type in the reader monad,
implicit arguments and intermediate values in the ex_info field of ex.
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Discussion

After optimisations, the running time of ring and ring_exp are in
the same order of magnitude.
On problems with larger exponents, ring_exp is noticeably faster
(20 times on x50 ∗ x50 = x100), also in practice for
(1 + x2 + x4 + x6) ∗ (1 + x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7.

Since the ex type is an AST, extending ring_exp to other algebraic
structures is relatively straightforward.
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