A Lean tactic for normalising ring expressions with exponents

Anne Baanen

Lean Forward Vrije Universiteit Amsterdam

IJCAR, 2 July 2020

Lean is a proof assistant based on the calculus of constructions. It has a simple kernel for proof checking and an elaborator with powerful tactic support.

The Lean community is developing mathlib, a repository of formalised classical mathematics proofs and proof automation.

The Lean Forward project aims to make proof assistants accessible to mathematicians by developing proof automation informed by users' needs.

To a mathematician, the following is obvious:

```
2^{n+1} - 1 = 2 * 2^n - 1
```

Lean should do it automatically.

The ring tactic (in Lean and Coq) proves equations using Horner normal form: efficient for the semiring operators + and *, but it doesn't support exponentiation (^{\land}) by variables.

To a mathematician, the following is obvious:

 $2^{n+1} - 1 = 2 * 2^n - 1$

Lean should do it automatically.

The ring tactic (in Lean and Coq) proves equations using Horner normal form: efficient for the semiring operators + and *, but it doesn't support exponentiation (^{\land}) by variables.

It's not too hard to solve this manually: rewrite $a^{n+1} = a^n * a$ and ring can finish by applying commutativity.

Such rules don't work unconditionally: x^{100} should not become 100 multiplications of x.

More examples from mathlib:

$$\begin{split} 2^{p} * 2 &= 2^{p+1} \\ 4^{m} * 4^{m+1} &= 4^{2m+1} \\ x^{k+2} - y^{k+2} &= x * (x^{k+1} - y^{k+1}) + (x * y^{k+1} - y^{k+2}) \\ (x+y)(x^{n+1} + (n+1)x^{n+1-1}y + zy^2) &= x^{n+2} + (n+2)x^{n+1}y + \\ & (xz + (n+1) * x^n + zy)y^2 \end{split}$$

Goal: a practical normalising tactic ring_exp for expressions with +, * and $^{\wedge}$, numerals (in \mathbb{Q}) and variables. It should solve all goals that ring can and be approximately as fast.

Goal: a practical normalising tactic ring_exp for expressions with +, * and $^{\wedge}$, numerals (in \mathbb{Q}) and variables. It should solve all goals that ring can and be approximately as fast.

To prove a = b, normalise a giving $p_a : a = a'$ and normalise b giving $p_b : b = b'$, then check a' is identical to b'. If identical, eq.trans p_a (eq.symm p_b) proves a = b.

Lean tactics typically don't use reflection since producing proof terms (in the VM) tends to be faster than kernel reduction.

The normal form is a syntax tree in the type family ex. The children for each node are restricted by a parameter ex_type:

<pre>inductive ex_type : Type</pre>							
sum prod exp base							
<pre>inductive ex : ex_type → Type</pre>							
	zero	:	ex_info →	ex	sum		0
	sum	:	ex_info \rightarrow ex prod \rightarrow ex sum \rightarrow	ex	sum		+
	coeff	:	ex_info \rightarrow coeff \rightarrow	ex	prod		rat
	prod	:	$\texttt{ex_info} \rightarrow \texttt{ex} \texttt{ exp } \rightarrow \texttt{ex} \texttt{ prod } \rightarrow$	ex	prod		*
	ехр	:	<code>ex_info</code> \rightarrow <code>ex</code> <code>base</code> \rightarrow <code>ex</code> <code>prod</code> \rightarrow	ex	exp		^
	var	:	ex_info \rightarrow atom \rightarrow	ex	base		atom
	sum_b	:	ex_info \rightarrow ex sum \rightarrow	ex	base		()

- (a + b) + c is not allowed: left argument to sum must be a product
- *a* * (*b* + *c*) is not allowed: right argument to prod must be a product

Commutativity: pick a linear order \prec on ex. Then sort $a + b + c + \cdots$ so that $a \prec b \prec c \prec \cdots$.

Commutativity: pick a linear order \prec on ex. Then sort $a + b + c + \cdots$ so that $a \prec b \prec c \prec \cdots$.

To prevent exponential blowup, don't unfold 100 * a to $a + a + \cdots + a$. This means keeping track of coefficients. The function add_overlap decides when to add coefficients:

$$\begin{array}{ll} \operatorname{add_overlap} (3*x^2) & (7*x^2) & = 10*x^2 \\ \operatorname{add_overlap} & (3*x^2) & (7*y^2) & = 3*x^2 + 7*y^2 \\ \operatorname{add_overlap} & (3*x^2) & (-3*x^2) & = 0 & (\operatorname{not} 0*x^2) \end{array}$$

Commutativity: pick a linear order \prec on ex. Then sort $a + b + c + \cdots$ so that $a \prec b \prec c \prec \cdots$.

To prevent exponential blowup, don't unfold 100 * a to $a + a + \cdots + a$. This means keeping track of coefficients. The function add_overlap decides when to add coefficients:

$$\begin{array}{ll} \text{add_overlap} & (3 * x^2) & (7 * x^2) & = 10 * x^2 \\ \text{add_overlap} & (3 * x^2) & (7 * y^2) & = 3 * x^2 + 7 * y^2 \\ \text{add_overlap} & (3 * x^2) & (-3 * x^2) & = 0 & (\text{not } 0 * x^2) \end{array}$$

In a general semiring R, exponentiation has type $^{\wedge} : R \to \mathbb{N} \to R$. During execution, ring_exp keeps track of the current type using a reader monad transformer. To be practical, the ring_exp tactic must be fast and optimisation is needed to achieve acceptable running time. The Horner form used by the ring tactic is optimal for + and *.

To be practical, the ring_exp tactic must be fast and optimisation is needed to achieve acceptable running time. The Horner form used by the ring tactic is optimal for + and *.

Typeclass instances and implicit arguments cost time to infer, so they are cached:

instances are stored with the current type in the reader monad, implicit arguments and intermediate values in the ex_info field of ex. After optimisations, the running time of ring and ring_exp are in the same order of magnitude.

On problems with larger exponents, ring_exp is noticeably faster (20 times on $x^{50} * x^{50} = x^{100}$), also in practice for $(1 + x^2 + x^4 + x^6) * (1 + x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7$.

Since the ex type is an AST, extending ring_exp to other algebraic structures is relatively straightforward.