A Lean tactic for normalising
ring expressions with exponents

Anne Baanen

Lean Forward
Vrije Universiteit Amsterdam V U
o

[JCAR, 2 July 2020

Lean is a proof assistant based on the calculus of constructions.
It has a simple kernel for proof checking and an elaborator with
powerful tactic support.

The Lean community is developing mathlib, a repository of
formalised classical mathematics proofs and proof automation.

The Lean Forward project aims to make proof assistants
accessible to mathematicians by developing proof automation
informed by users’ needs.

To a mathematician, the following is obvious:
ontl _1—92x2"—1
Lean should do it automatically.

The ring tactic (in Lean and Coq) proves equations using Horner
normal form: efficient for the semiring operators + and x, but it
doesn’t support exponentiation (") by variables.

To a mathematician, the following is obvious:
ontl _1—92x2"—1
Lean should do it automatically.

The ring tactic (in Lean and Coq) proves equations using Horner
normal form: efficient for the semiring operators + and x, but it
doesn’t support exponentiation (") by variables.

It's not too hard to solve this manually: rewrite a"*! = a” % a and
ring can finish by applying commutativity.

100

Such rules don't work unconditionally: x** should not become 100

multiplications of x.

Background

More examples from mathlib:

2P 5 2 = 2PT1
4m " 4m+1 _ 42m+1
SR ek (T L) (e L R
(x+y) (X" 4+ (n+ 1))(’“ 1y+ 2V*) = X2 4 (n42)X" Tyt
(xz+ (n+1) % X" + zy)y?

Design overview

Goal: a practical normalising tactic ring_exp for expressions with -+,
« and ", numerals (in Q) and variables. It should solve all goals that
ring can and be approximately as fast.

Design overview

Goal: a practical normalising tactic ring_exp for expressions with -+,
« and ", numerals (in Q) and variables. It should solve all goals that
ring can and be approximately as fast.

To prove a = b, normalise a giving p, : a= 4’ and normalise b giving
pp: b= F, then check & is identical to b'. If identical,

eq.trans p, (eq.symm pp) proves a = b.

Lean tactics typically don't use reflection since producing proof terms
(in the VM) tends to be faster than kernel reduction.

EB

The normal form is a syntax tree in the type family ex. The children

for each node are restricted by a parameter ex_type:

inductive ex_type

: Type

| sum | prod | exp | base

inductive ex :

zero : ex_info -
sum : ex_info -»
coeff : ex_info -»
prod : ex_info -
exp : ex_info -
var : ex_info »
sum_b : ex_info -»

ex_type - Type

ex prod » ex sum
coeff

ex exp - ex prod
ex base » ex prod
atom

ex sum

N A A 2 2

ex
ex
ex
ex
ex
ex
ex

sum —-—
sum —-
prod —-
prod —-
exp --
base --
base --

m (a+ b) + cis not allowed: left argument to sum must be

product

m ax (b+ ¢) is not allowed: right argument to prod must be a

product

Intricacies

Commutativity: pick a linear order < on ex. Then sort
at+b+c+---sothata<b<c<---.

Intricacies

Commutativity: pick a linear order < on ex. Then sort
at+b+c+---sothata<b<c<---.

To prevent exponential blowup, don't unfold 100 * a to
a+a+---+ a. This means keeping track of coefficients.

The function add_overlap decides when to add coefficients:

add_overlap (3%x%) (7%x*) =10%x
add_overlap (3% x°) (Txy?) =3%x 4 T7x)>
add_overlap (3*x°) (=3xx*) =0 (not 0 x%)

Intricacies

Commutativity: pick a linear order < on ex. Then sort
at+b+c+---sothata<b<c<---.

To prevent exponential blowup, don't unfold 100 * a to
a+a+---+ a. This means keeping track of coefficients.

The function add_overlap decides when to add coefficients:

add_overlap (3%x%) (7%x*) =10%x
add_overlap (3% x°) (Txy?) =3%x 4 T7x)>
add_overlap (3*x°) (=3xx*) =0 (not 0 x%)

In a general semiring R, exponentiation has type * : R —+ N — R.
During execution, ring_exp keeps track of the current type
using a reader monad transformer.

Optimisations

To be practical, the ring_exp tactic must be fast and optimisation is
needed to achieve acceptable running time. The Horner form used by
the ring tactic is optimal for + and x.

Optimisations

To be practical, the ring_exp tactic must be fast and optimisation is
needed to achieve acceptable running time. The Horner form used by
the ring tactic is optimal for + and x.

Typeclass instances and implicit arguments cost time to infer,

so they are cached:

instances are stored with the current type in the reader monad,
implicit arguments and intermediate values in the ex_info field of ex.

Discussion

After optimisations, the running time of ring and ring_exp are in
the same order of magnitude.

On problems with larger exponents, ring_exp is noticeably faster
(20 times on x°° % X0 = x'90) "also in practice for

I+ + X+ X)) x (14 x) =1+ x+ 2+ + X+ + X8+ X

Since the ex type is an AST, extending ring_exp to other algebraic
structures is relatively straightforward.

