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Introduction

Our project is the first formalization of several essential notions of
algebraic number theory, in the Lean 3 prover as part of mathlib.

Goal: lay a useful foundation for theory-building.

mathlib is a community-driven project to build a tightly-integrated
library of formalized mathematics.
Developing with mathlib means updating your code regularly
in exchange for frequent new results and improvements.
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Background: global fields

A number field is finite dimensional as a Q-vector space,
of the form Q(α) for some algebraic α.

Each number field K contains a ring of integers OK
mirroring the way Q contains Z.
Example: the Gaussian integers Z[i] inside Q(i).

A global field is either a number field or a
function field: finite extension of a field of rational functions Fq(t).

Function fields also have a ring of integers, mirroring Fq[t] ⊂ Fq(t).

Theorem: rings of integers are Dedekind domains.
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Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 1

b I (with b ̸= 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain ⇐⇒ fractional ideals ̸= 0 are invertible.

Principal fractional ideals
⟨ a

b
⟩
= a

bOK for a
b ∈ K form a subgroup

of the fractional ideals; the quotient is the class group ClOK .

Theorem: if OK is a ring of integers, ClOK is a finite abelian group.
The class number of K is the cardinality of ClOK .

Theorem: A Dedekind domain is a UFD ⇐⇒ it is a PID
⇐⇒ ClOK is trivial ⇐⇒ class number of K = 1.
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Number fields; field extensions

mathlib typically uses typeclasses for algebraic structures, e.g.
class is_number_field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite_dimensional ℚ K]

Typeclass inference automates the implications char_zero K →
algebra ℚ K → module ℚ K required for finite_dimensional ℚ K.

A field extension L/K is represented in mathlib by an instance
[algebra K L] giving the canonical inclusion map algebra_map K L.

A tower L/K/F is given by inclusions [algebra F K] [algebra K L]
[algebra F L] and an instance [is_scalar_tower F K L] stating
the maps commute.
Coherence proof obligations are automated through typeclass search.
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Representing Q(α)

Number fields have the form Q(α), where α is algebraic:
the minimal polynomial fα ∈ Q[x] is irreducible and fα(α) = 0.

Many constructions of Q(α): subtype of C, quotient type Q[x]/fα, ...
These are isomorphic but not equal: how do we reason uniformly?

We used the power basis: Q(α) has a Q-basis 1, α, . . . , αn−1.
Theorem: each construction of Q(α) is a field with power basis
generated by α.
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Dedekind domains

We defined Dedekind domains as integral domains R with an
is_dedekind_domain R instance:
class is_dedekind_domain (R : Type*) [integral_domain R] :

Prop :=
(to_is_noetherian_ring : is_noetherian_ring R)
(dimension_le_one : ∀ (P : ideal R), P ≠ 0 →

is_prime P → is_maximal P)
(is_integrally_closed :

integral_closure R (fraction_ring R) = ⊥)
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Fractional ideals

We formalized fractional ideals of R as a subtype:
R-submodules I of Frac(R) such that ∃a : R, aI ⊆ R.

Fractional ideals have a semiring structure (like submodules):
0 = {0}

1 = {x | x ∈ R}

I + J = {x + y | x ∈ I, y ∈ J}

I ∗ J is generated by x ∗ y, x ∈ I, y ∈ J

x ∈ I/J ⇐⇒ ∀y ∈ J, x ∗ y ∈ I

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.
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Re-defining division

The group_with_zero typeclass used to define x/y := x ∗ y−1.
For fractional ideals we want to define I−1 := 1/I. How to deal with
this circularity?

Solution: turn defeq into propositional equality by adding a new
operation (/) to group (_with_zero) and an axiom x/y = x ∗ y−1.

This required about 500 changes in mathlib.
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Dedekind domain theorems

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.

Difficulties:

Showing x ∈ I ∗ J implies x =
∑

k ykzk for yk ∈ I, zk ∈ J.

Coercions: I can be an integral ideal or set ⊆ R or a fractional
ideal or submodule or set ⊆ Frac(R).

Theorem: Principal ideal domains are Dedekind domains.
Corollary: Z and Fq[t] are Dedekind domains.
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Rings of integers are Dedekind domains

Theorem: The integral closure of a Dedekind domain R in a finite
separable extension K/Frac(R) is a Dedekind domain.
Corollary: Rings of integers, closures of PIDs in finite separable
extensions, are Dedekind domains.

“Accidental” collaboration with the Berkeley Galois theory group:

We defined intermediate_field

They used it to formalize the primitive element theorem

We used that to show finite separable field extensions have a
power basis

They used that to show conjugate roots of α correspond to
images σ(α) for σ : F(α) → K fixing F

We used that to show the trace form is nondegenerate
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Finiteness of the class group

Theorem: If K is a global field, the class group of OK is finite.

Typical proofs use Minkowski’s lattice point theorem for number fields,
extending this to function fields is complicated.

We introduced a new notion of admissible absolute value,
and proved if abs : R → Z is admissible,
this intermediate step in the classical proof holds:
theorem exists_mem_finset_approx'

(a b : integral_closure R L) :=
∃ (q : integral_closure R L) (r ∈ finset_approx L f abs),
abs_norm f abs (r • a - q * b) < abs_norm f abs b
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Finiteness of the class group

After formalizing the remainder of the classical proof, it remained to
find admissible absolute values.

For Z, the usual absolute value is admissible.
For Fq[t], |f|deg := qdeg f is admissible.

def class_group (f : fraction_map R K) :=
quotient_group.quotient (to_principal_ideal f).range

noncomputable def number_field.class_number (K : Type*)
[field K] [is_number_field K] : ℕ :=

card (class_group (ring_of_integers.fraction_map K))
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Conclusions

Total contribution: ± 5000 lines of project-specific code, ± 2500 lines
background work.
(Difficult to quantify exactly due to tight integration with mathlib.)

Rules of thumb for our work:

Parametrize (is_scalar_tower, power_basis, ...) instead of
choosing a canonical construction.

Refactoring allows deep integration between different viewpoints.

Contribute quickly and often, so others do your work for you.
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