
A formalization of Dedekind do-
mains and class groups of global
fields

Anne Baanen
Sander R. Dahmen
Ashvni Narayanan
Filippo A. E. Nuccio

ITP, June 2021

Introduction

Our project is the first formalization of several essential notions of
algebraic number theory, in the Lean 3 prover as part of mathlib.

Goal: lay a useful foundation for theory-building.

mathlib is a community-driven project to build a tightly-integrated
library of formalized mathematics.
Developing with mathlib means updating your code regularly
in exchange for frequent new results and improvements.

1 13

Background: global fields

A number field is finite dimensional as a Q-vector space,
of the form Q(α) for some algebraic α.

Each number field K contains a ring of integers OK
mirroring the way Q contains Z.
Example: the Gaussian integers Z[i] inside Q(i).

A global field is either a number field or a
function field: finite extension of a field of rational functions Fq(t).

Function fields also have a ring of integers, mirroring Fq[t] ⊂ Fq(t).

Theorem: rings of integers are Dedekind domains.

2 13

Background: global fields

A number field is finite dimensional as a Q-vector space,
of the form Q(α) for some algebraic α.

Each number field K contains a ring of integers OK
mirroring the way Q contains Z.
Example: the Gaussian integers Z[i] inside Q(i).

A global field is either a number field or a
function field: finite extension of a field of rational functions Fq(t).

Function fields also have a ring of integers, mirroring Fq[t] ⊂ Fq(t).

Theorem: rings of integers are Dedekind domains.

2 13

Background: global fields

A number field is finite dimensional as a Q-vector space,
of the form Q(α) for some algebraic α.

Each number field K contains a ring of integers OK
mirroring the way Q contains Z.
Example: the Gaussian integers Z[i] inside Q(i).

A global field is either a number field or a
function field: finite extension of a field of rational functions Fq(t).

Function fields also have a ring of integers, mirroring Fq[t] ⊂ Fq(t).

Theorem: rings of integers are Dedekind domains.

2 13

Background: global fields

A number field is finite dimensional as a Q-vector space,
of the form Q(α) for some algebraic α.

Each number field K contains a ring of integers OK
mirroring the way Q contains Z.
Example: the Gaussian integers Z[i] inside Q(i).

A global field is either a number field or a
function field: finite extension of a field of rational functions Fq(t).

Function fields also have a ring of integers, mirroring Fq[t] ⊂ Fq(t).

Theorem: rings of integers are Dedekind domains.

2 13

Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 1

b I (with b ̸= 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain ⇐⇒ fractional ideals ̸= 0 are invertible.

Principal fractional ideals
⟨ a

b
⟩
= a

bOK for a
b ∈ K form a subgroup

of the fractional ideals; the quotient is the class group ClOK .

Theorem: if OK is a ring of integers, ClOK is a finite abelian group.
The class number of K is the cardinality of ClOK .

Theorem: A Dedekind domain is a UFD ⇐⇒ it is a PID
⇐⇒ ClOK is trivial ⇐⇒ class number of K = 1.

3 13

Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 1

b I (with b ̸= 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain ⇐⇒ fractional ideals ̸= 0 are invertible.

Principal fractional ideals
⟨ a

b
⟩
= a

bOK for a
b ∈ K form a subgroup

of the fractional ideals; the quotient is the class group ClOK .

Theorem: if OK is a ring of integers, ClOK is a finite abelian group.
The class number of K is the cardinality of ClOK .

Theorem: A Dedekind domain is a UFD ⇐⇒ it is a PID
⇐⇒ ClOK is trivial ⇐⇒ class number of K = 1.

3 13

Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 1

b I (with b ̸= 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain ⇐⇒ fractional ideals ̸= 0 are invertible.

Principal fractional ideals
⟨ a

b
⟩
= a

bOK for a
b ∈ K form a subgroup

of the fractional ideals; the quotient is the class group ClOK .

Theorem: if OK is a ring of integers, ClOK is a finite abelian group.
The class number of K is the cardinality of ClOK .

Theorem: A Dedekind domain is a UFD ⇐⇒ it is a PID
⇐⇒ ClOK is trivial ⇐⇒ class number of K = 1.

3 13

Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 1

b I (with b ̸= 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain ⇐⇒ fractional ideals ̸= 0 are invertible.

Principal fractional ideals
⟨ a

b
⟩
= a

bOK for a
b ∈ K form a subgroup

of the fractional ideals; the quotient is the class group ClOK .

Theorem: if OK is a ring of integers, ClOK is a finite abelian group.
The class number of K is the cardinality of ClOK .

Theorem: A Dedekind domain is a UFD ⇐⇒ it is a PID
⇐⇒ ClOK is trivial ⇐⇒ class number of K = 1.

3 13

Number fields; field extensions

mathlib typically uses typeclasses for algebraic structures, e.g.
class is_number_field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite_dimensional ℚ K]

Typeclass inference automates the implications char_zero K →
algebra ℚ K → module ℚ K required for finite_dimensional ℚ K.

A field extension L/K is represented in mathlib by an instance
[algebra K L] giving the canonical inclusion map algebra_map K L.

A tower L/K/F is given by inclusions [algebra F K] [algebra K L]
[algebra F L] and an instance [is_scalar_tower F K L] stating
the maps commute.
Coherence proof obligations are automated through typeclass search.

4 13

Number fields; field extensions

mathlib typically uses typeclasses for algebraic structures, e.g.
class is_number_field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite_dimensional ℚ K]

Typeclass inference automates the implications char_zero K →
algebra ℚ K → module ℚ K required for finite_dimensional ℚ K.

A field extension L/K is represented in mathlib by an instance
[algebra K L] giving the canonical inclusion map algebra_map K L.

A tower L/K/F is given by inclusions [algebra F K] [algebra K L]
[algebra F L] and an instance [is_scalar_tower F K L] stating
the maps commute.
Coherence proof obligations are automated through typeclass search.

4 13

Number fields; field extensions

mathlib typically uses typeclasses for algebraic structures, e.g.
class is_number_field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite_dimensional ℚ K]

Typeclass inference automates the implications char_zero K →
algebra ℚ K → module ℚ K required for finite_dimensional ℚ K.

A field extension L/K is represented in mathlib by an instance
[algebra K L] giving the canonical inclusion map algebra_map K L.

A tower L/K/F is given by inclusions [algebra F K] [algebra K L]
[algebra F L] and an instance [is_scalar_tower F K L] stating
the maps commute.
Coherence proof obligations are automated through typeclass search.

4 13

Representing Q(α)

Number fields have the form Q(α), where α is algebraic:
the minimal polynomial fα ∈ Q[x] is irreducible and fα(α) = 0.

Many constructions of Q(α): subtype of C, quotient type Q[x]/fα, ...
These are isomorphic but not equal: how do we reason uniformly?

We used the power basis: Q(α) has a Q-basis 1, α, . . . , αn−1.
Theorem: each construction of Q(α) is a field with power basis
generated by α.

5 13

Representing Q(α)

Number fields have the form Q(α), where α is algebraic:
the minimal polynomial fα ∈ Q[x] is irreducible and fα(α) = 0.

Many constructions of Q(α): subtype of C, quotient type Q[x]/fα, ...
These are isomorphic but not equal: how do we reason uniformly?

We used the power basis: Q(α) has a Q-basis 1, α, . . . , αn−1.
Theorem: each construction of Q(α) is a field with power basis
generated by α.

5 13

Dedekind domains

We defined Dedekind domains as integral domains R with an
is_dedekind_domain R instance:
class is_dedekind_domain (R : Type*) [integral_domain R] :

Prop :=
(to_is_noetherian_ring : is_noetherian_ring R)
(dimension_le_one : ∀ (P : ideal R), P ≠ 0 →

is_prime P → is_maximal P)
(is_integrally_closed :

integral_closure R (fraction_ring R) = ⊥)

6 13

Fractional ideals

We formalized fractional ideals of R as a subtype:
R-submodules I of Frac(R) such that ∃a : R, aI ⊆ R.

Fractional ideals have a semiring structure (like submodules):
0 = {0}

1 = {x | x ∈ R}

I + J = {x + y | x ∈ I, y ∈ J}

I ∗ J is generated by x ∗ y, x ∈ I, y ∈ J

x ∈ I/J ⇐⇒ ∀y ∈ J, x ∗ y ∈ I

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.

7 13

Fractional ideals

We formalized fractional ideals of R as a subtype:
R-submodules I of Frac(R) such that ∃a : R, aI ⊆ R.

Fractional ideals have a semiring structure (like submodules):
0 = {0}

1 = {x | x ∈ R}

I + J = {x + y | x ∈ I, y ∈ J}

I ∗ J is generated by x ∗ y, x ∈ I, y ∈ J

x ∈ I/J ⇐⇒ ∀y ∈ J, x ∗ y ∈ I

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.

7 13

Re-defining division

The group_with_zero typeclass used to define x/y := x ∗ y−1.
For fractional ideals we want to define I−1 := 1/I. How to deal with
this circularity?

Solution: turn defeq into propositional equality by adding a new
operation (/) to group (_with_zero) and an axiom x/y = x ∗ y−1.

This required about 500 changes in mathlib.

8 13

Re-defining division

The group_with_zero typeclass used to define x/y := x ∗ y−1.
For fractional ideals we want to define I−1 := 1/I. How to deal with
this circularity?

Solution: turn defeq into propositional equality by adding a new
operation (/) to group (_with_zero) and an axiom x/y = x ∗ y−1.

This required about 500 changes in mathlib.

8 13

Dedekind domain theorems

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.

Difficulties:

Showing x ∈ I ∗ J implies x =
∑

k ykzk for yk ∈ I, zk ∈ J.

Coercions: I can be an integral ideal or set ⊆ R or a fractional
ideal or submodule or set ⊆ Frac(R).

Theorem: Principal ideal domains are Dedekind domains.
Corollary: Z and Fq[t] are Dedekind domains.

9 13

Dedekind domain theorems

Theorem: I ∗ (1/I) = 1 for all I ̸= 0 iff R is a Dedekind domain.

Difficulties:

Showing x ∈ I ∗ J implies x =
∑

k ykzk for yk ∈ I, zk ∈ J.

Coercions: I can be an integral ideal or set ⊆ R or a fractional
ideal or submodule or set ⊆ Frac(R).

Theorem: Principal ideal domains are Dedekind domains.
Corollary: Z and Fq[t] are Dedekind domains.

9 13

Rings of integers are Dedekind domains

Theorem: The integral closure of a Dedekind domain R in a finite
separable extension K/Frac(R) is a Dedekind domain.
Corollary: Rings of integers, closures of PIDs in finite separable
extensions, are Dedekind domains.

“Accidental” collaboration with the Berkeley Galois theory group:

We defined intermediate_field

They used it to formalize the primitive element theorem

We used that to show finite separable field extensions have a
power basis

They used that to show conjugate roots of α correspond to
images σ(α) for σ : F(α) → K fixing F

We used that to show the trace form is nondegenerate

10 13

Rings of integers are Dedekind domains

Theorem: The integral closure of a Dedekind domain R in a finite
separable extension K/Frac(R) is a Dedekind domain.
Corollary: Rings of integers, closures of PIDs in finite separable
extensions, are Dedekind domains.

“Accidental” collaboration with the Berkeley Galois theory group:

We defined intermediate_field

They used it to formalize the primitive element theorem

We used that to show finite separable field extensions have a
power basis

They used that to show conjugate roots of α correspond to
images σ(α) for σ : F(α) → K fixing F

We used that to show the trace form is nondegenerate
10 13

Finiteness of the class group

Theorem: If K is a global field, the class group of OK is finite.

Typical proofs use Minkowski’s lattice point theorem for number fields,
extending this to function fields is complicated.

We introduced a new notion of admissible absolute value,
and proved if abs : R → Z is admissible,
this intermediate step in the classical proof holds:
theorem exists_mem_finset_approx'

(a b : integral_closure R L) :=
∃ (q : integral_closure R L) (r ∈ finset_approx L f abs),
abs_norm f abs (r • a - q * b) < abs_norm f abs b

11 13

Finiteness of the class group

Theorem: If K is a global field, the class group of OK is finite.

Typical proofs use Minkowski’s lattice point theorem for number fields,
extending this to function fields is complicated.

We introduced a new notion of admissible absolute value,
and proved if abs : R → Z is admissible,
this intermediate step in the classical proof holds:
theorem exists_mem_finset_approx'

(a b : integral_closure R L) :=
∃ (q : integral_closure R L) (r ∈ finset_approx L f abs),
abs_norm f abs (r • a - q * b) < abs_norm f abs b

11 13

Finiteness of the class group

After formalizing the remainder of the classical proof, it remained to
find admissible absolute values.

For Z, the usual absolute value is admissible.
For Fq[t], |f|deg := qdeg f is admissible.

def class_group (f : fraction_map R K) :=
quotient_group.quotient (to_principal_ideal f).range

noncomputable def number_field.class_number (K : Type*)
[field K] [is_number_field K] : ℕ :=

card (class_group (ring_of_integers.fraction_map K))

12 13

Finiteness of the class group

After formalizing the remainder of the classical proof, it remained to
find admissible absolute values.

For Z, the usual absolute value is admissible.
For Fq[t], |f|deg := qdeg f is admissible.

def class_group (f : fraction_map R K) :=
quotient_group.quotient (to_principal_ideal f).range

noncomputable def number_field.class_number (K : Type*)
[field K] [is_number_field K] : ℕ :=

card (class_group (ring_of_integers.fraction_map K))

12 13

Conclusions

Total contribution: ± 5000 lines of project-specific code, ± 2500 lines
background work.
(Difficult to quantify exactly due to tight integration with mathlib.)

Rules of thumb for our work:

Parametrize (is_scalar_tower, power_basis, ...) instead of
choosing a canonical construction.

Refactoring allows deep integration between different viewpoints.

Contribute quickly and often, so others do your work for you.

13 / 13

Conclusions

Total contribution: ± 5000 lines of project-specific code, ± 2500 lines
background work.
(Difficult to quantify exactly due to tight integration with mathlib.)

Rules of thumb for our work:

Parametrize (is_scalar_tower, power_basis, ...) instead of
choosing a canonical construction.

Refactoring allows deep integration between different viewpoints.

Contribute quickly and often, so others do your work for you.

13 / 13

