A formalization of Dedekind domains and class groups of global fields

Anne Baanen Sander R. Dahmen Ashvni Narayanan Filippo A. E. Nuccio

Our project is the first formalization of several essential notions of algebraic number theory, in the Lean 3 prover as part of mathlib.

Goal: lay a useful foundation for theory-building.

mathlib is a community-driven project to build a tightly-integrated library of formalized mathematics. Developing with mathlib means updating your code regularly in exchange for frequent new results and improvements.

A number field is finite dimensional as a Q-vector space, of the form $\mathbb{Q}(\alpha)$ for some algebraic α .

A number field is finite dimensional as a Q-vector space, of the form $\mathbb{Q}(\alpha)$ for some algebraic α .

Each number field *K* contains a ring of integers *O^K* mirroring the way $\mathbb Q$ contains $\mathbb Z$. **Example**: the Gaussian integers $\mathbb{Z}[i]$ inside $\mathbb{Q}(i)$.

A number field is finite dimensional as a Q-vector space, of the form $\mathbb{Q}(\alpha)$ for some algebraic α .

Each number field *K* contains a ring of integers *O^K* mirroring the way $\mathbb Q$ contains $\mathbb Z$. **Example**: the Gaussian integers $\mathbb{Z}[i]$ inside $\mathbb{Q}(i)$.

A global field is either a number field or a function field: finite extension of a field of rational functions $\mathbb{F}_q(t)$.

Function fields also have a ring of integers, mirroring $\mathbb{F}_q[t] \subset \mathbb{F}_q(t)$.

A number field is finite dimensional as a Q-vector space, of the form $\mathbb{O}(\alpha)$ for some algebraic α .

Each number field *K* contains a ring of integers *O^K* mirroring the way $\mathbb Q$ contains $\mathbb Z$. **Example**: the Gaussian integers $\mathbb{Z}[i]$ inside $\mathbb{Q}(i)$.

A global field is either a number field or a function field: finite extension of a field of rational functions $\mathbb{F}_q(t)$.

Function fields also have a ring of integers, mirroring $\mathbb{F}_q[t] \subset \mathbb{F}_q(t)$.

Theorem: rings of integers are Dedekind domains.

Theorem: Dedekind domain \iff fractional ideals $\neq 0$ are invertible.

Theorem: Dedekind domain \iff fractional ideals $\neq 0$ are invertible.

Principal fractional ideals ⟨ *a* $\left< \frac{a}{b} \right> = \frac{a}{b} \mathcal{O}_K$ for $\frac{a}{b} \in K$ form a subgroup of the fractional ideals; the quotient is the class group $\mathcal{C}\mathit{l}_{\mathcal{O}_K}.$

Theorem: if O_K is a ring of integers, Cl_{O_K} is a finite abelian group. The class number of *K* is the cardinality of $Cl_{\mathcal{O}_K}$.

Theorem: Dedekind domain \iff fractional ideals $\neq 0$ are invertible.

Principal fractional ideals ⟨ *a* $\left< \frac{a}{b} \right> = \frac{a}{b} \mathcal{O}_K$ for $\frac{a}{b} \in K$ form a subgroup of the fractional ideals; the quotient is the class group $\mathcal{C}\mathit{l}_{\mathcal{O}_K}.$

Theorem: if O_K is a ring of integers, Cl_{O_K} is a finite abelian group. The class number of *K* is the cardinality of $Cl_{\mathcal{O}_K}$.

Theorem: A Dedekind domain is a UFD *⇐⇒* it is a PID $\iff \mathcal{C}\mathcal{C}_{\mathcal{O}_K}$ is trivial \iff class number of $K = 1$.

mathlib typically uses typeclasses for algebraic structures, e.g.

```
class is number field (K : Type*) [field K] : Prop :=
[cz : char zero K] [fd : finite dimensional @ K]
```
Typeclass inference automates the implications char_zero K *→* algebra \mathbb{Q} K \rightarrow module \mathbb{Q} K required for finite dimensional \mathbb{Q} K. mathlib typically uses typeclasses for algebraic structures, e.g.

```
class is number field (K : Type^*) [field K] : Prop :=
[cz : char zero K] [fd : finite dimensional ℚ K]
```
Typeclass inference automates the implications char_zero K *→* algebra \mathbb{Q} K \rightarrow module \mathbb{Q} K required for finite dimensional \mathbb{Q} K.

A field extension *L*/*K* is represented in mathlib by an instance [algebra K L] giving the canonical inclusion map algebra map K L. mathlib typically uses typeclasses for algebraic structures, e.g.

class is number field $(K : Type^*)$ [field K] : Prop := $[cz : char zero K]$ [fd : finite dimensional $@ K]$

Typeclass inference automates the implications char_zero K *→* algebra \mathbb{Q} K \rightarrow module \mathbb{Q} K required for finite dimensional \mathbb{Q} K.

A field extension *L*/*K* is represented in mathlib by an instance [algebra K L] giving the canonical inclusion map algebra map K L.

A tower *L*/*K*/*F* is given by inclusions [algebra F K] [algebra K L] [algebra F L] and an instance [is_scalar_tower F K L] stating the maps commute.

Coherence proof obligations are automated through typeclass search.

Number fields have the form $\mathbb{Q}(\alpha)$, where α is algebraic: the minimal polynomial $f_\alpha \in \mathbb{Q}[x]$ is irreducible and $f_\alpha(\alpha) = 0$.

Many constructions of $\mathbb{Q}(\alpha)$: subtype of \mathbb{C} , quotient type $\mathbb{Q}[x]/f_{\alpha}$, ... These are isomorphic but not equal: how do we reason uniformly?

Number fields have the form $\mathbb{Q}(\alpha)$, where α is algebraic: the minimal polynomial $f_\alpha \in \mathbb{Q}[x]$ is irreducible and $f_\alpha(\alpha) = 0$.

Many constructions of $\mathbb{Q}(\alpha)$: subtype of \mathbb{C} , quotient type $\mathbb{Q}[\times]/f_{\alpha}$, ... These are isomorphic but not equal: how do we reason uniformly?

We used the power basis: $\mathbb{Q}(\alpha)$ has a $\mathbb{Q}\text{-}$ basis $1, \alpha, \ldots, \alpha^{n-1}.$ **Theorem**: each construction of $\mathbb{Q}(\alpha)$ is a field with power basis generated by *α*.

We defined Dedekind domains as integral domains *R* with an is dedekind domain R instance:

```
class is dedekind domain (R : Type*) [integral domain R] :
   Prop :=
(to is noetherian ring : is noetherian ring R)
(dimension le one : ∀ (P : ideal R), P \neq 0 →
  is prime P \rightarrow is maximal P)
(is integrally closed :
  integral closure R (fraction ring R) = ⊥)
```
Fractional ideals

We formalized fractional ideals of *R* as a subtype: *R*-submodules *I* of $\textsf{Frac}(R)$ such that $\exists a: R, a \in R$.

Fractional ideals have a semiring structure (like submodules): $0 = \{0\}$

- $1 = \{x \mid x \in R\}$
- $I + J = \{x + y \mid x \in I, y \in J\}$
- *I ∗ J* is generated by *x ∗ y*, *x ∈ I*, *y ∈ J*
- *x ∈ I*/*J ⇐⇒ ∀y ∈ J, x ∗ y ∈ I*

Fractional ideals

We formalized fractional ideals of *R* as a subtype: *R*-submodules *I* of $\textsf{Frac}(R)$ such that $\exists a: R, a \in R$.

Fractional ideals have a semiring structure (like submodules): $0 = \{0\}$

- $= 1 = \{x \mid x \in R\}$
- $I + J = \{x + y \mid x \in I, y \in J\}$
- *I ∗ J* is generated by *x ∗ y*, *x ∈ I*, *y ∈ J*
- *x ∈ I*/*J ⇐⇒ ∀y ∈ J, x ∗ y ∈ I*

Theorem: $I * (1/I) = 1$ for all $I \neq 0$ iff *R* is a Dedekind domain.

The group_with_zero typeclass used to define $x/y := x * y^{-1}$. For fractional ideals we want to define $I^{-1} := 1/I$. How to deal with this circularity?

The group_with_zero typeclass used to define $x/y := x * y^{-1}$. For fractional ideals we want to define $I^{-1} := 1/I$. How to deal with this circularity?

Solution: turn defeq into propositional equality by adding a new α operation $\left(\frac{\pi}{2}\right)$ to group (_with_zero) and an axiom $x/y = x * y^{-1}$.

This required about 500 changes in mathlib.

Theorem: $I * (1/I) = 1$ for all $I \neq 0$ iff *R* is a Dedekind domain.

Difficulties:

- Showing $x \in I * J$ implies $x = \sum_{k} y_{k}z_{k}$ for $y_{k} \in I$, $z_{k} \in J$.
- Coercions: *I* can be an integral ideal or set *⊆ R* or a fractional ideal or submodule or set \subseteq Frac (R) .

Theorem: $I * (1/I) = 1$ for all $I \neq 0$ iff *R* is a Dedekind domain.

Difficulties:

- Showing $x \in I * J$ implies $x = \sum_{k} y_{k}z_{k}$ for $y_{k} \in I$, $z_{k} \in J$.
- Coercions: *I* can be an integral ideal or set *⊆ R* or a fractional ideal or submodule or set *⊆* Frac(*R*).

Theorem: Principal ideal domains are Dedekind domains. **Corollary**: \mathbb{Z} and $\mathbb{F}_q[t]$ are Dedekind domains.

Rings of integers are Dedekind domains

Theorem: The integral closure of a Dedekind domain *R* in a finite separable extension $K/$ Frac (R) is a Dedekind domain. **Corollary**: Rings of integers, closures of PIDs in finite separable extensions, are Dedekind domains.

Rings of integers are Dedekind domains

Theorem: The integral closure of a Dedekind domain *R* in a finite separable extension $K/$ Frac (R) is a Dedekind domain. **Corollary**: Rings of integers, closures of PIDs in finite separable extensions, are Dedekind domains.

"Accidental" collaboration with the Berkeley Galois theory group:

- We defined intermediate field
- They used it to formalize the primitive element theorem
- We used that to show finite separable field extensions have a power basis
- They used that to show conjugate roots of *α* correspond to images *σ*(*α*) for *σ* : *F*(*α*) *→ K* fixing *F*
- We used that to show the trace form is nondegenerate

Theorem: If *K* is a global field, the class group of \mathcal{O}_K is finite.

Typical proofs use Minkowski's lattice point theorem for number fields, extending this to function fields is complicated.

Theorem: If *K* is a global field, the class group of \mathcal{O}_K is finite.

Typical proofs use Minkowski's lattice point theorem for number fields, extending this to function fields is complicated.

We introduced a new notion of admissible absolute value, and proved if abs : $R \rightarrow \mathbb{Z}$ is admissible, this intermediate step in the classical proof holds:

theorem exists_mem_finset_approx' (a b : integral closure R L) := ∃ (q : integral_closure R L) (r ∈ finset_approx L f abs), abs_norm f abs $(r \cdot a - q \cdot b) < abs_norm$ f abs b

After formalizing the remainder of the classical proof, it remained to find admissible absolute values.

For $\mathbb Z$, the usual absolute value is admissible. For $\mathbb{F}_q[t]$, $|f|_{deg} := q^{deg f}$ is admissible.

After formalizing the remainder of the classical proof, it remained to find admissible absolute values.

For $\mathbb Z$, the usual absolute value is admissible. For $\mathbb{F}_q[t]$, $|f|_{deg} := q^{deg f}$ is admissible.

def class group (f : fraction map R K) := quotient_group.quotient (to_principal_ideal f).range

noncomputable def number field.class number (K : Type*) [field K] [is number field K] : ℕ := card (class group (ring of integers.fraction map K))

Total contribution: *±* 5000 lines of project-specific code, *±* 2500 lines background work.

(Difficult to quantify exactly due to tight integration with mathlib.)

Total contribution: *±* 5000 lines of project-specific code, *±* 2500 lines background work.

(Difficult to quantify exactly due to tight integration with mathlib.)

Rules of thumb for our work:

- **Parametrize (is scalar tower, power basis, ...) instead of** choosing a canonical construction.
- Refactoring allows deep integration between different viewpoints.
- Contribute quickly and often, so others do your work for you.