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Introduction

Our project is the first formalization of several essential notions of
algebraic number theory, in the Lean 3 prover as part of mathlib.

Goal: lay a useful foundation for theory-building.

mathlib is a community-driven project to build a tightly-integrated
library of formalized mathematics.

Developing with mathlib means updating your code regularly

in exchange for frequent new results and improvements.
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A global field is either a number field or a
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Function fields also have a ring of integers, mirroring Fq[t] C Fq(t).

Theorem: rings of integers are Dedekind domains.
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Background: class number

Fractional ideals extend (integral) ideals with division by scalars:
a fractional ideal is of the form 3/ (with b # 0).
Fractional ideals are not automatically invertible!

Theorem: Dedekind domain <= fractional ideals # 0 are invertible.

Principal fractional ideals <%> = 3Ok for £ € K form a subgroup

of the fractional ideals; the quotient is the class group Clo,.

Theorem: if Ok is a ring of integers, Clp, is a finite abelian group.
The class number of K'is the cardinality of Clo,..

Theorem: A Dedekind domain is a UFD <= itis a PID
<= Clo, is trivial <= class number of K = 1.
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class is number field (K : Type*) [field K] : Prop :=
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algebra @ K — module Q K required for finite dimensional Q K.
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mathlib typically uses typeclasses for algebraic structures, e.g.

class is number field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite dimensional Q K]

Typeclass inference automates the implications char zero K —
algebra @ K — module Q K required for finite dimensional Q K.

A field extension L/K is represented in mathlib by an instance
[algebra K L] giving the canonical inclusion map algebra map K L.

A tower L/K/F is given by inclusions [algebra F K] [algebra K L]
[algebra F L] and an instance [is scalar tower F K L] stating
the maps commute.

Coherence proof obligations are automated through typeclass search.
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These are isomorphic but not equal: how do we reason uniformly?
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the minimal polynomial f, € Q[x] is irreducible and f,(«) = 0.

Many constructions of Q(«): subtype of C, quotient type Q[x]/f, ...
These are isomorphic but not equal: how do we reason uniformly?
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We used the power basis: Q(«) has a Q-basis 1,q,...,«
Theorem: each construction of Q(«) is a field with power basis
generated by «.



Dedekind domains

We defined Dedekind domains as integral domains R with an
is dedekind domain R instance:

class is_dedekind domain (R : Type*) [integral domain R]
Prop :=
(to_is noetherian ring : is noetherian ring R)
(dimension le one : V (P : ideal R), P # 0 -
is prime P - is maximal P)
(is integrally closed :
integral closure R (fraction ring R) = 1)




Fractional ideals

We formalized fractional ideals of R as a subtype:
R-submodules | of Frac(R) such that Ja: R,al C R.

Fractional ideals have a semiring structure (like submodules):
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Fractional ideals have a semiring structure (like submodules):
m 0= {0}

ml={x|x€R}
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I+ Jis generated by xxy, xe [, ye J
mxel/l)] < Vyelxxyel
Theorem: /% (1/1) =1 for all / # 0 iff Ris a Dedekind domain.
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Re-defining division

The group with zero typeclass used to define x/y := x* y~ L.
For fractional ideals we want to define /=! := 1//. How to deal with
this circularity?

Solution: turn defeq into propositional equality by adding a new
operation (/) to group (_with zero) and an axiom x/y = x* y~ L.

This required about 500 changes in mathlib.
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Theorem: [x (1/]) =1 for all / # 0 iff R is a Dedekind domain.
Difficulties:

m Showing x € I« Jimplies x =Y, yizi for yx € I, z € J.

m Coercions: [ can be an integral ideal or set C R or a fractional
ideal or submodule or set C Frac(R).




Dedekind domain theorems

Theorem: [x (1/]) =1 for all / # 0 iff R is a Dedekind domain.
Difficulties:
m Showing x € I« Jimplies x =Y, yizi for yx € I, z € J.

m Coercions: [ can be an integral ideal or set C R or a fractional
ideal or submodule or set C Frac(R).

Theorem: Principal ideal domains are Dedekind domains.
Corollary: Z and Fg[t] are Dedekind domains.
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Theorem: The integral closure of a Dedekind domain R in a finite
separable extension K/ Frac(R) is a Dedekind domain.

Corollary: Rings of integers, closures of PIDs in finite separable
extensions, are Dedekind domains.

“Accidental” collaboration with the Berkeley Galois theory group:

m We defined intermediate field
m They used it to formalize the primitive element theorem

m We used that to show finite separable field extensions have a
power basis

m They used that to show conjugate roots of « correspond to
images o(«) for o : Fla) — K fixing F

m We used that to show the trace form is nondegenerate
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We introduced a new notion of admissible absolute value,
and proved if abs : R — Z is admissible,
this intermediate step in the classical proof holds:

theorem exists mem finset approx'
(a b : integral closure R L) :=
3 (g : integral closure R L) (r € finset approx L f abs),
abs norm f abs (r = a - g * b) < abs norm f abs b
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After formalizing the remainder of the classical proof, it remained to
find admissible absolute values.

For Z, the usual absolute value is admissible.
For Fg[t], |fldeg := q%97 is admissible.




Finiteness of the class group

After formalizing the remainder of the classical proof, it remained to
find admissible absolute values.

For Z, the usual absolute value is admissible.
For Fg[t], |fldeg := q%97 is admissible.

def class group (f : fraction map R K) :=
quotient group.quotient (to principal ideal f).range

noncomputable def number field.class number (K : Type*)

[field K] [is number field K] : N :=
card (class group (ring of integers.fraction map K))



Conclusions

Total contribution: £ 5000 lines of project-specific code, + 2500 lines
background work.
(Difficult to quantify exactly due to tight integration with mathlib.)
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Rules of thumb for our work:

m Parametrize (is_scalar_tower, power_basis, ...) instead of
choosing a canonical construction.

m Refactoring allows deep integration between different viewpoints.

m Contribute quickly and often, so others do your work for you.
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