
Use and abuse of instance param-
eters in mathlib

Anne Baanen

Vrije Universiteit Amsterdam

ITP, 2022-08-10



What the title means

Lean is a theorem prover based on the calculus of constructions.
mathlib is the flagship Lean library.

Naming convention: typeclasses are a design pattern, implemented in
Lean by the mechanism instance parameters.
Typeclasses in Coq work similarly.

1 15



What the title means

Lean is a theorem prover based on the calculus of constructions.
mathlib is the flagship Lean library.

Naming convention: typeclasses are a design pattern, implemented in
Lean by the mechanism instance parameters.
Typeclasses in Coq work similarly.

1 15



Parameter kinds

def sub {A : Type} [add_group A] (a b : A) : A :=
add a (neg b)

lemma sub_eq_add_neg {A : Type} [add_group A]
(a b : A) : sub a b = add a (neg b) := by refl

(explicit parameters): supplied by user
{implicit parameters}: inferred through unification
[instance parameters]: inferred through synthesis

2 15



Instance synthesis algorithm

Lean finds instances through synthesis:
search through all declarations marked @[instance],
until one unifies with the goal.

Instances can have instance parameters too.
These are also synthesized, resulting in depth-first search.
(Lean 4 brings a more efficient algorithm.)

3 15



Instance synthesis algorithm

Lean finds instances through synthesis:
search through all declarations marked @[instance],
until one unifies with the goal.

Instances can have instance parameters too.
These are also synthesized, resulting in depth-first search.
(Lean 4 brings a more efficient algorithm.)

3 15



Class declarations

Classes are record types declared with class:
class add_group (A : Type) :=
(zero : A)
(neg : A → A)
(add : A → A → A)
(add_assoc : ∀ (x y z : A),

add x (add y z) = add (add x y) z)
(zero_add : ∀ (x : A), add zero x = x)
(neg_add : ∀ (x : A), add (neg x) x = zero)

Dependent types mean classes can contain and depend on types, data
and proofs in the same way.

4 15



Two inheritance patterns

Unbundled inheritance adds the superclass as instance parameter:
class add_comm_group (A : Type) [add_group A] :=
(add_comm : ∀ (x y : A), add x y = add y x)

lemma neg_sub {A : Type}
[add_group A] [add_comm_group A] (a b : A) :
neg (sub a b) = sub b a := ...

Bundled inheritance provides superclass through instances:
instance add_comm_group.to_add_group (A : Type)
[add_comm_group A] : add_group a := ...

lemma neg_sub {A : Type} [add_comm_group A]
(a b : A) : neg (sub a b) = sub b a := ...

5 15



Two inheritance patterns

Unbundled inheritance adds the superclass as instance parameter:
class add_comm_group (A : Type) [add_group A] :=
(add_comm : ∀ (x y : A), add x y = add y x)

lemma neg_sub {A : Type}
[add_group A] [add_comm_group A] (a b : A) :
neg (sub a b) = sub b a := ...

Bundled inheritance provides superclass through instances:
instance add_comm_group.to_add_group (A : Type)

[add_comm_group A] : add_group a := ...

lemma neg_sub {A : Type} [add_comm_group A]
(a b : A) : neg (sub a b) = sub b a := ...

5 15



Mathlib’s algebraic hierarchy

Mathlib uses bundled inheritance for the algebraic hierarchy:
class semigroup (G : Type) := ...

class comm_semigroup (G : Type)
extends semigroup G := ...

class monoid (M : Type)
extends semigroup M := ...

class comm_monoid (M : Type)
extends monoid M, comm_semigroup M := ...

Multiple inheritance and overlapping instances are common.
Rule against definitionally unequal diamonds:
all solutions for a synthesis goal should unify.

6 15



Mathlib’s algebraic hierarchy

Mathlib uses bundled inheritance for the algebraic hierarchy:
class semigroup (G : Type) := ...

class comm_semigroup (G : Type)
extends semigroup G := ...

class monoid (M : Type)
extends semigroup M := ...

class comm_monoid (M : Type)
extends monoid M, comm_semigroup M := ...

Multiple inheritance and overlapping instances are common.
Rule against definitionally unequal diamonds:
all solutions for a synthesis goal should unify.

6 15



Multi-parameter classes

Lean supports multi-parameter classes:
class module (R M : Type)

[semiring R] [add_comm_monoid M] := ...

Vector spaces are expressed as
[field K] [add_comm_group V] [module K V].

Parameters to instances must be determined from the goal, so
module requires unbundled inheritance: an instance
module R M → add_comm_monoid M would leave R unspecified.
A linter in mathlib automatically warns for this situation.

7 15



Multi-parameter classes

Lean supports multi-parameter classes:
class module (R M : Type)

[semiring R] [add_comm_monoid M] := ...

Vector spaces are expressed as
[field K] [add_comm_group V] [module K V].

Parameters to instances must be determined from the goal, so
module requires unbundled inheritance: an instance
module R M → add_comm_monoid M would leave R unspecified.
A linter in mathlib automatically warns for this situation.

7 15



Bundled morphisms

Mathlib uses bundled morphisms: structures containing a map and
proofs showing it is a homomorphism.
structure monoid_hom (M N : Type)

[monoid M] [monoid N] :=
(to_fun : R → S)
(map_one : to_fun 1 = 1)
(map_mul : ∀ x y,

to_fun (x * y) = to_fun x * to_fun y)

structure ring_hom (R S : Type)
[semiring R] [semiring S]
extends monoid_hom R S := ...

Lean uses instances to coerce these tuples to functions.

8 15



Multiplicative explosion

Since monoid_hom R S ≠ ring_hom R S, proofs do not generalize
automatically:
lemma monoid_hom.map_prod (g : monoid_hom M N) :

g Π i in s, f i = Π i in s, g (f i)

lemma ring_hom.map_prod (g : ring_hom R S) :
g Π i in s, f i = Π i in s, g (f i) :=

monoid_hom.map_prod s f g.to_monoid_hom

There are many structures extending monoid_hom and many monoid
operations in mathlib, resulting in multiplicatively many lemmas.

9 15



Multiplicative explosion

Since monoid_hom R S ≠ ring_hom R S, proofs do not generalize
automatically:
lemma monoid_hom.map_prod (g : monoid_hom M N) :

g Π i in s, f i = Π i in s, g (f i)

lemma ring_hom.map_prod (g : ring_hom R S) :
g Π i in s, f i = Π i in s, g (f i) :=

monoid_hom.map_prod s f g.to_monoid_hom

There are many structures extending monoid_hom and many monoid
operations in mathlib, resulting in multiplicatively many lemmas.

9 15



Morphism classes

My solution: generalize from monoid_hom M N to all types G with a
monoid_hom_class G M N instance:
class monoid_hom_class (F M N : Type)

[monoid M] [monoid N] :=
(to_fun : F → M → N)
(map_one : ∀ (f : F), to_fun f 1 = 1)
(map_mul : ∀ (f : F) (x y : M),

to_fun f (x * y) = to_fun f x * to_fun f y)

class ring_hom_class (F R S : Type)
[semiring R] [semiring S]
extends monoid_hom_class R S := ...

lemma map_prod {G : Type} [monoid_hom_class G M N]
(g : G) : g Π i in s, f i = Π i in s, g (f i)

10 15



Morphism classes

My solution: generalize from monoid_hom M N to all types G with a
monoid_hom_class G M N instance:
class monoid_hom_class (F M N : Type)

[monoid M] [monoid N] :=
(to_fun : F → M → N)
(map_one : ∀ (f : F), to_fun f 1 = 1)
(map_mul : ∀ (f : F) (x y : M),

to_fun f (x * y) = to_fun f x * to_fun f y)

class ring_hom_class (F R S : Type)
[semiring R] [semiring S]
extends monoid_hom_class R S := ...

lemma map_prod {G : Type} [monoid_hom_class G M N]
(g : G) : g Π i in s, f i = Π i in s, g (f i)

10 15



Forgetful inheritance

There are two natural module ℕ ℕ instances:

add_comm_monoid M → module ℕ M
(k • n = n + ⋯ + n, k times)
semiring R → module R R
(k • n = k * n)

Diamond rule: scalar multiplications should be definitionally equal.

Forgetful inheritance pattern: inheritance cannot create new data.
Instead, define scalar multiplication in the superclass:
class add_monoid (M : Type) :=
(nsmul : ℕ → M → M)
(nsmul_zero : ∀ x, nsmul 0 x = 0)
(nsmul_succ : ∀ (n : ℕ) x,
nsmul (n + 1) x = x + nsmul n x)

11 15



Forgetful inheritance

There are two natural module ℕ ℕ instances:

add_comm_monoid M → module ℕ M
(k • n = n + ⋯ + n, k times)
semiring R → module R R
(k • n = k * n)

Diamond rule: scalar multiplications should be definitionally equal.

Forgetful inheritance pattern: inheritance cannot create new data.
Instead, define scalar multiplication in the superclass:
class add_monoid (M : Type) :=
(nsmul : ℕ → M → M)
(nsmul_zero : ∀ x, nsmul 0 x = 0)
(nsmul_succ : ∀ (n : ℕ) x,

nsmul (n + 1) x = x + nsmul n x)
11 15



Ad hoc classes and instances

If n is a prime number, Z/nZ is a field.
Instance synthesis can’t (practically) prove primality,
so a class nat.prime does not make sense.

Instead, Mathlib uses fact (nat.prime n):
class fact (p : Prop) : Prop := (out : p)

instance zmod.field (n : ℕ) [fact (nat.prime n)] :
field (zmod n)

Lean maintains a cache of candidate instances.
The letI tactic inserts into this cache, providing ad hoc instances
within a proof context.

12 15



Ad hoc classes and instances

If n is a prime number, Z/nZ is a field.
Instance synthesis can’t (practically) prove primality,
so a class nat.prime does not make sense.

Instead, Mathlib uses fact (nat.prime n):
class fact (p : Prop) : Prop := (out : p)

instance zmod.field (n : ℕ) [fact (nat.prime n)] :
field (zmod n)

Lean maintains a cache of candidate instances.
The letI tactic inserts into this cache, providing ad hoc instances
within a proof context.

12 15



Ad hoc classes and instances

If n is a prime number, Z/nZ is a field.
Instance synthesis can’t (practically) prove primality,
so a class nat.prime does not make sense.

Instead, Mathlib uses fact (nat.prime n):
class fact (p : Prop) : Prop := (out : p)

instance zmod.field (n : ℕ) [fact (nat.prime n)] :
field (zmod n)

Lean maintains a cache of candidate instances.
The letI tactic inserts into this cache, providing ad hoc instances
within a proof context.

12 15



Term growth

Unbundled inheritance results in a parameter for each superclass,
including in the instances themselves:
instance prod.comm_monoid

[has_one M] [has_one N] [has_mul M] [has_mul N]
[semigroup M] [semigroup N] [monoid M] [monoid N]
[comm_semigroup M] [comm_semigroup N]
[comm_monoid M] [comm_monoid N] :
comm_monoid (M × N)

Linear growth of types causes exponential growth of synthesized
instances.
Thus, deep hierarchies require bundling.

13 15



Looping in synthesis

The simple depth-first algorithm used by Lean 3 can easily end up
looping:
class inhabited (t : Type) := (default : t)
class subsingleton (t : Type) :=
(eq : ∀ (x y : t), x = y)
class unique (t : Type)

extends inhabited t, subsingleton t

instance (t : Type) [inhabited t] [subsingleton t] :
unique t

Depth first search will end up diverging along the path
unique → inhabited → unique → …

Mathlib has a linter checking that synthesis succeeds or fails quickly.
14 15



Conclusions

Typeclasses scale to a large library...

if you are able to fix common
classes of subtle errors involving dangerous instances, definitional
equality and divergence... and can keep the whole system running
quickly enough.

15 / 15



Conclusions

Typeclasses scale to a large library... if you are able to fix common
classes of subtle errors involving dangerous instances, definitional
equality and divergence...

and can keep the whole system running
quickly enough.

15 / 15



Conclusions

Typeclasses scale to a large library... if you are able to fix common
classes of subtle errors involving dangerous instances, definitional
equality and divergence... and can keep the whole system running
quickly enough.

15 / 15


